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1 Introduction

In this laboratory practice you will learn that the precision in the GPS positioning
depends on two different terms: on one side the measured pseudoranges to the
satellites have errors due to the ionosphere, relativistic effects, Doppler, etc. Those
errors are modeled and the receiver tries to cancel them as much as possible, but
some error still remains. On the other hand, finding the user’s position entails solving a
system of equations and, depending on the system matrix condition number, the
obtained solution (the user position) will show an error higher than the error in the
measured pseudoranges. This second effect is only due to the processing of the
pseudoranges at the receiver, which “amplifies” the errors. This amplification effect is
called the “dilution of precision” (DOP) and it depends only on the system matrix
condition, which in turn depends on the relative positions of the involved GPS
satellites with respect to the user. Knowing this, if we need to obtain the position with
high precision (for topography applications for example), we can plan in advance the
field measurements and take positions only when the satellites over the measurement
site are in the best configuration to reduce the DOP to the minimum possible. The
tasks to perform are marked in red.

2 LOS coverage

In the previous laboratory work (P1) you have written a set of Matlab programs to
compute the ECEF coordinates of all GPS satellites at a given time. Those coordinates
are independent of the position of the user. Using the programs of the previous
laboratory work, compute the ECEF coordinates of all GPS satellites at current time
and date.

If we focus on a specific user location on the Earth surface it is important to know
which subset of GPS satellites are visible from the user position at a given moment. If a
satellite is visible we say that we are in “Line of Sight” (LoS) coverage of that satellite.
To achieve this goal we need to find the pointing angles: azimuth, elevation and
distance of any GPS satellite from a given observation point. With these parameters
we can decide if there is LoS between the satellite and the user.

2.1 Azimuth, elevation and distance

In this part of the work the azimuth, elevation and distance from the observation point

(the user position) to the satellite will be calculated.

- The azimuth (B) is the horizontal angle to the satellite measured clockwise from a
north base line.

- The elevation (a) is the angle between the horizon and the center of the satellite.
Those angles are represented in Figure 2.1.
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Figure 2.1. Azimuth (), elevation («a) and distance (d)

Using the algorithms from previous work you are able to locate a satellite at ECEF (x, vy,
z) Cartesian coordinates which are fixed to three Earth reference axis. Also, we can
specify an observation point (the user position) with its LLA coordinates. The scenario
is shown in Figure 2.2. In order to compute the pointing angles and distance the next
steps must be followed:

7" ECEF
(x, v, 2)

-
Py

LLA
(Lat, Lon, Alt)

Figure 2.2. Satellite pointing scenario

Set the user position to the LLA coordinates of EETAC:
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and write a function to convert the LLA coordinates of the user position to ECEF
Cartesian (x, y, z) using the ellipsoid WGS84. You can use the expressions:
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where 4 means geodetic longitude, ¢ means geodetic latitude, 2 means the height
above the ellipsoid and g, e are the ellipsoid parameters.
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Compute the vector that points from the user position to each of the satellites by
subtractions of vectors. This is simple if both vectors are in the ECEF coordinate

system.
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Figure 2.3. Pointing vector

Computing the vector p is achieved by subtracting the vectors of the user position
(observation point) and the satellite ECEF coordinates:

p = Sat — Obs

Now we know the vector p that points from the user position to the satellite but its
coordinates are given in a system parallel to ECEF centered at the user position. So we
must rotate the axes to transform the vector to NED (North, East, Down) coordinates
with respect to the user position.

Write a MATLAB functions to rotate the axes from Cartesian ECEF to Cartesian NED
coordinates and use them to convert the pointing vector coordinates into NED
coordinates relative to the user position. This conversion is a multiplication of the ECEF
vector by a 3x3 matrix whose coefficients depend on the latitude and longitude of the
observation point. To rotate from ECEF to NED we must apply the following matrix
product (where A and ¢ are, respectively, the geodetic longitude and latitude of the
user):

N —sin® cosA —sin® sinA  cos® |x
El= —sind coSA 0 [yl
D —cos® cosA —cosP sinA —sin@llz

The elevation and azimuth angles, and also the distance, from NED Cartesian
coordinates can be computed easily. Figure 2.4 represents the vector from the
observation point to the satellite represented in NED coordinates. In this case the
azimuth is denoted as 8 and the elevation as a.



Figure 2.4. From NED coordinates to elevation and azimuth

From Figure 2.4 we can obtain the pointing angles and the distance to each of the
satellites:

d =+/N2+ E2 + D2

= asin(-3)
a = asin d

[ = atan (%)

Once you have implemented those expressions it’s easy to find out which satellites are
visible from the user position at a given time. You just have to check which satellites
have an elevation higher than a minimum value and plot them in a polar
representation using the provided Matlab function “viewSat” (see ANNEX I:
Available satellite mapping function). We will assume that a satellite must be at least
10° above the horizon to provide a useful GPS signal. At this point you must compare
your result with the polar plot generated with the tools recommended at section 5 of
this document.

3 The GPS navigation system of equations

This section describes how the satellite pseudoranges are related to the user position
and the method for finding the user position by solving the navigation system of
equations.

Ignoring all the error sources except the time errors, the pseudorange between the
user and one of the satellites can be expressed as:

Pj = \](xj - xu)z + (yj - Yu)z + (Zj - Zu)z —cty = f O Yu Zw ty)



where x;, y; and z; are the ECEF coordinates of the satellite, x,, y,, and z, are the
ECEF coordinates of the user, c is the speed of light and t,, the difference between the
time error of the satellite (known) and the time error of the user’s clock (unknown).

Since this expression contains 4 unknowns, we need at least 4 independent equations
to solve the system. Therefore, a minimum of 4 pseudoranges to 4 different satellites
have to be measured to find the position and the clock error (notice that the time
error is common to the 4 equations). The pseudorange is measured at the receiver by
computing the correlation between the received PRN sequences and their local
version. It’s called a pseudorange because it depends on the range (distance) to the
satellite but also on the time error and other errors (mainly the ionosphere error, since
the pseudorange assumes that the signal travels at the speed of light, which is not true
inside the ionosphere).

Although the pseudorange equations are not linear, the equation system can be solved
using a linearization method. In order to obtain a linear system, the pseudorange p; is
expressed as:

Pj = [ Cows Yz t) = (R + Dxy, Py + By, 2y, + Az, fu + Aty,)

where £, 9, , Z,, and t,, are the user estimated position and time (known) and Ax,,,
Ay, , Az, and At,, are the increments (unknown) with respect to the estimated values.

By expressing the function as a Taylor series (centered at the estimated values) and
keeping only the linear terms we get the approximated expression:
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where all the partial derivatives can be computed to give:
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and where 7} is the estimated range to the satellite (which can be computed based on
the user estimated position):
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Notice that the vector aj=(ax/,ayj,azi)is the unitary vector pointing from the

estimated user position to the satellite. Then, the estimated pseudorange, which can
be computed based on the user estimated position and clock error, is given by:

A~ A 2 ~ 2 n 2 n . . . .
,0] =\/(xj—xu) +(y]_yu) +(Zj_Zu) _C'tuzf(xulquzu:tu)
Notice that estimated pseudorange is not measured, but computed; so it contains no

errors. Based on p; we can write the approximated pseudorange as:
pj = Pj — ayj - Axy — ayj - Ayy — agj - Azy — ¢+ Aty
And defining Ap; = p; — pj we get:
Apj = ayj - Axy + ayj - Ay, + agj - Azy + - Aty
In case of measuring the pseudorange to 4 different satellites we get the following

equation system:

Apy = Ay - Axy + ayq - Ayy + ayq - Azy + - Aty
Apy = Qyp - AXy + ayy - Ayy + ay, - Azy + ¢ Aty
Aps = a3 - Axy + ayz - Ay, + agz - Azy + ¢ - Aty
Apy = Qyy - DXy + Ay - Ayy + ayy - Az + € Aty

which is a linear system that can be also written in matrix notation:

Ap=H"-Au

In that system the known data are: the incremental pseudorange vector:

Apy
Ap;
Ap3
Ap,y

Ap =

and the unitary vectors from the user estimated position (matrix H):

raxl ay1r Az 1]

_ a Ay, Az 1 !
| axs Ayz  Qz3 1 |
Qxg QAyg Qzq 1J



While the unknown vector is the user incremental position:

Ax,,

Ay,
Az,

c-At,

Au =

When the number of available satellites is exactly 4 the system can be solved by
inverting matrix H:

Au=H"1-Ap

but when more than 4 satellites are available, which is the usual situation, the system
becomes over specified (more equations than unknowns) and it has not an exact
solution. In this case we must assume that the pseudorange vector contains errors and
solve the system in the sense of the least square error. The least square error solution
is based on the pseudo-inverse matrix and can also be applied when only 4 satellites
are available:

Au = (HTH) "HT - Ap

This solution must be computed repeatedly until the magnitude of Au becomes
sufficiently small (to ensure that the Taylor series approximation is realistic).

Set the user position to the LLA coordinates of EETAC and compute matrix H using all
the GPS satellites with elevation higher than 10° at the current time and date. You
don’t need to solve the navigation system of equations. Notice that matrix H is (N x
4), since it has 4 columns and as many rows as satellites are taken into consideration
(N). Also notice that the rows of H (except the last column which is always equal to 1)
are simply the 3 Cartesian coordinates of the unitary vectors pointing from the user to
each of the satellites.

4 Dilution of precision

In the previous equations we did not take into account explicitly the error terms inside
the measured pseudoranges. Remember that those errors can be reduced by using
adequate modelling, but cannot be reduced to zero. If we admit that there are some
unknown (not modelled) errors in the measured pseudoranges the positioning
equation becomes:

Ap' =Ap+n=H-Au+nq

where Ap'is the measured pseudorange vector (with errors), Ap is the theoretical
pseudorange vector (including only the time errors) and n is the pseudorange error
vector. The least squares solution of the previous equation is:

-10-



Au’ = (HTH)_lHT -Ap’ = Au + (HTH)_lHT ‘M=Au+¢

where Au’' is the obtained incremental position of the user. This means that we cannot
obtain the user position without errors. The error vector affecting the obtained
position is given by:

g=(HTH) HT-q

and we see that the pseudorange error vector is amplified by a factor which depends
only on the system matrix. This is the factor that originates the DOP.

We can assume that all the components of 1 = [1; 7, 113 4]" are independent zero
mean random variables with the same variance: o2. Ignoring for the moment the
matrix (HTH) ™1, the vector that produces the positioning errors in terms of distance if
contributed by the multiplication of the first 3 rows of matrix HT by vector 1, that is:

A1 M1+ Ax2 "N+ Ax3 " N3 + Ay " Ns
Ay1 M1t Ayp "Ma +Ay3 M3+ Ays "Ny
Az1 M1t Az N2+ Az3 N3+ Azg "N

The squared magnitude of this error vector is:

2
(ax1'7l1+ax2'772+ax3'713+ax4'774)2+(ay1'771+ay2'772+ay3'773+ay4'774)
+ (az1 M1+ Az My + Az N3+ Agy - 14)?

Assuming that all the components of vector 1 are independent random variables, the
average of this squared magnitude is:

(a1 +ay, +az) -0+ (a3, + a3, +aZ,) - 02 + (aZz + a3 + aj3) - 0% + (afy + a4

+ a2,) - 0% = 4a?

That is the same average of the squared magnitude of vector 1, so we conclude that
the product of vector 1 by matrix HT does not increase the distance error.

The time error component is contributed by the product of the last row of matrix HT
by vector m, that is 1y + 1, + 15 + 1, which has an average squared value of 40
(again the same as the average squared magnitude of vector 1), so we conclude that
the product by matrix HT does not produce any increase in the positioning errors.

It is only the product by matrix Q = (HTH)~! what contributes to the increase of the
error variance. Notice that matrix Q is calculated from the estimated user position.
Matrix Q is always a (4 x 4) square matrix (even if more than 4 satellites are considered
for H).
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Assuming that all the components of 1 are independent zero mean random variables
with the same variance (o2), only the diagonal elements of Q are relevant for the DOP
calculation. This can be shown by computing the covariance matrix of vector ¢:

ge’ = QH" -qm"-HQ" = QHT - 6%I-HQ" = ¢ - Q-H"H- Q" = Q" = 6°Q
For our purposes matrix Q can be written as:

Qxx ny sz Qctx

Q — Qxy ny sz Qctyl
sz Qyz sz Qctz J
Qxct cht cht Qctct

Since vector € has been computed in Cartesian ECEF coordinates, gy, 0, and g, are the
error standard deviations referred to the ECEF axis. If we want to obtain the variance
components of the error vector referred to the local coordinate system (oy, oz and
op) we must rotate vector € to North, East, Down Cartesian coordinates. This will allow
us to decompose the DOP into HDOP and VDOP. The rotated error vector can be
expressed as 8 = Rg, with R given by:

—sin@ cosA —sin@sind cos® O
—sinA cosA 0 0

" |—cos® cosA  —cos® sinA —sin® 0
0 0 0 1

Notice that matrix R rotates the spatial components of € from ECEF to NED and does
not change the time component of €. The covariance matrix of 8 is:

88T =R-ee"-RT =R -06%Q-R"T = 6%Q'
Q=R-Q-R"

dnn 9N 9ND  9Nct
qen  9ee  9Ep  YEct
dpn  49pE 9pp  Ypct
dctN Ycete Y9etp Yctet

Q=
The Horizontal DOP (HDOP) is the multiplication factor that increases the distance
errors in the horizontal plane. It is given by:

HDOP = ,/qnn + qgE

The HDOP is usually the most relevant parameter for positioning applications on the
Earth surface. The vertical DOP (VDOP) is the multiplication factor that increases the
distance error in the vertical plane (altitude error). It is given by:

VDOP = qDD

The Position DOP (PDOP) is the multiplication factor that increases the 3D distance
error. It is given by:

-12 -



PDOP = JQxx +Qyy + Qs = /aun + qgE + Gop = VHDOP? + VDOP?

The Time DOP (TDOP) is the multiplication factor that increases the time error. It is
given by:

TDOP = /qctct

The Geometric DOP (GDOP) takes into account the position and time error increase
factor:

GDOP = /PDOP? + TDOP?

Werite a Matlab function to compute the GDOP, PDOP, HDOP, VDOP and TDOP. You
must previously compute matrices Q and Q’ from matrix H. Add a time loop to your
program to repeat the DOP computations for each minute within the next 6 hours
interval. You will get a plot similar to this:

The following pseudo-code summarizes the explained steps (where functions
“LLA2ECEF”, “CONSTELLATION”, “LoS” and “POINTING” or equivalent code must be
written by you or reused from previous lab. work):

xyzSatellites = CONSTELLATION (time);% find ECEF coordinates of GPS sats.

sta lat = lat (EETAC) % set user position to EETAC

sta lon = lon (EETAC)

xyztUserPosition = LLA2ECEF ([sta lat, sta lon]); % find ECEF user position
time = now () ; % Set time

xyzLocalSatellites = LoS(xyzSatellites); % find visible GPS satellites
H = POINTING (xyzLocalSatellites, xyztUserPosition);% Compute matrix H
Q= HTH)™! ¢ Compute matrix Q
Q' =RQRT ¢ Compute matrix Q'

GDOP
PDOP

sgrt (auwwt dgez + dop + Jetet) 7 % Geometric DOP
sgrt (gwn+ dgez + dop) ; Position DOP

o0
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HDOP = sqgrt (gunt dsr) ;7 % Horizontal plane DOP
VDOP = sqgrt (gpp) ;7 % Vertical DOP
TDOP = sgrt (Jetet) 5 % Time DOP

5 Testyour results with an online service or with your smart
phone

You can use an online calculator to compare the obtained results about DOP and
satellite visibility. Check this URL:

http://gnssmissionplanning.com/

Another online resource for computing DOP and satellite visibility is:

http://www.trimble.com/GNSSPlanningOnline/

But this web page will ask you to install the (free) Microsoft Silverlight extension. For this
reason http://gnssmissionplanning.com seems more friendly.

These instructions are for http://www.trimble.com/GNSSPlanningOnline/ but the use of
http://gnssmissionplanning.com is quite similar.

First you must set up your location (EETAC, Castelldefels) at this screen (set the mask angle to
109):

GNSS Planning Online

’ Configuracién

Configuracion
’ Biblioteca de Satélites
’ Elevacion Latitud: [M 4127510 | -
. o Longitud: E 1,9757°
’ Mamers de Satélites Skl | ! |
Altura: |4m |
DOPs
Méscara: |1D=' | Obstrucciones...
’ Visibilidad

Dia: |30/04/2016 I Hoy

Intervalo visible: | 12:00 = | Intervalo de tiempo [horas]: |6 =

Huso Herario: l (UTC+01:00) Brussels, Copenhagen, Madrid, Paris > ]

’ Grafica del Cielo

’ Vista Mundial

’ Mapa de Iondsfera

—

’ Informacion de Iondsfera

Then select the GPS satellite constellation only:
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GNSS Planning Online

[ Configuracién ] Biblioteca de Satélites
[Biblioteca de Satélites ]
- ’ || Glonass J ’ || calileo J ’ || BeiDou J [|_| QZss5 ]
[ Elevacion ]
] ¥ co1 [v] @@ cio [ @4 cie [ @8 c2s
[Nl.'lmero de Satélites ] _ _ _ _
[v] @4 coz [+ @8 c11 v &8 c20 v &8 c29
[DOF’S ] ¥ @@ cos v @ 12 v @@ c21 ¥ @@ s30
[‘u"isihilidad ] [ & coa v @@ c13 v @@ c22 ¥ @@ c31
] @& cos [ @@ cia [ @4 G2z [ @4 c3=2
’ Grafica del Cielo ] . _ _ -
vl @8 cos v @@ cis v ¥ c24
’Vista Mundial ] v @@ cor v @@cis (v @@ czs
’Hapa de Iondsfera ] 1 '@ E ] '9’ wily ] '@ D
v @@ ces v @dcis (v @@ c27
’ Informacidn de Ion[’:sfera] - - —
ITcdos ] [ Ninguno
Ubicacién: N 41,2751°; E 1,9757°; 4m Sistemals) de satélite: GPS; «
Hora Local: 30/04/2016 12:00 - 18:00 (UTC+2) Mascara: 10°
Huso Horario: (UTC+01:00) Brussels, Copenhagen, Madrid, Paris

In the next screens you can check which GPS satellites are currently visible and their
azimuth and elevation as seen from your current location:

GNSS Planning Online

Grafica del Cielo

Configuracion

Biblioteca de Satélites

Elevacién

Numero de Satélites

I )
I )
I )
I )
I )
I )

DOPs

Visibilidad
T
lVista Mundial ]
l Mapa de Iondsfera ]

l Informacion de Ionljsfera]

Ubicacién: N 41,2751°; E 1,9757%; 4m Sistemal(s) de satélite: GPS
Hora Local: ~ 30/04/2016 12:00 - 18:00 (UTC+2)  Ma&scara: 10°
Huso Heorario: (UTC+01:00) Brussels, Copenhagen, Madrid, Paris
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This screen shows you the evolution of the different DOP values at your location using
a time step of 10 minutes:

GNSS Planning Online

Configuracién

Biblioteca de Satélites

Elevacion

Nimero de Satélites

Visibilidad

Grafica del Cielo

Vista Mundial

Mapa de Iongsfera

Informacién de Iondsfera

1l Lt

16:00

17:00 18:00

Hora Posicion (3D)—— Vertical T 1

30/04/2016 12:00:00

Ubicacion: N 41,2751°; E 1,9757°% 4m Sistema(s) de satélite: GPS
Hora Local:  30/04/2016 12:00 - 18:00 (UTC+2)  Mascara: 10°

Huso Horario: (UTC+01:00) Brussels, Copenhagen, Madrid, Paris

Notice that this tool computes the DOP with low time resolution. With your Matlab
program you can compute the DOPs every minute:

In this way you can notice the stepwise changes in DOPs due to the appearance or
disappearance of GPS satellites over the horizon.

You can download several applications for smart phones which give you a polar map
showing the elevation and azimuth angles to visible GPS satellites and the actual
values of DOP from your current position.

One of these applications for Android is the “GPS status and toolbox”. It can be
downloaded from Google Play:

https://play.google.com/store/apps/details?id=com.eclipsim.gpsstatus2&hl=es
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7 ANNEXI: Available satellite mapping function

This Matlab function represents the available GPS satellites in a polar plane centered
at the user position. The angle represents the azimuth and the radius represents the
elevation. Both magnitudes are in degrees.

Satellite pointing costellation

MNarth

West East

10:21:25.000 UTC, Mon 02/09/2013

The function is called as follows:
viewSat (AZIMUTH, ELEV, ID, min elev, max elev, downstr)

The inputs are the following:

e AZIMUTH: Array with the values of azimuth of the available satellites (in
degrees).

e ELEV: Array with the values of elevation of the available satellites (in degrees).

e |D: PRN sequence identifier of the available satellites.

e Min_elev: miminum elevation in degrees.

e Max_elev: maximum elevation in degrees.

e Downstr: text which is showed at the bottom of the figure.

-18 -



	1 Introduction
	2 LOS coverage
	2.1 Azimuth, elevation and distance

	3 The GPS navigation system of equations
	4 Dilution of precision
	5 Test your results with an online service or with your smart phone
	6 References
	7 ANNEX I: Available satellite mapping function

