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1 Introduction 

In this laboratory practice you will learn that the precision in the GPS positioning 
depends on two different terms: on one side the measured pseudoranges to the 
satellites have errors due to the ionosphere, relativistic effects, Doppler, etc. Those 
errors are modeled and the receiver tries to cancel them as much as possible, but 
some error still remains. On the other hand, finding the user’s position entails solving a 
system of equations and, depending on the system matrix condition number, the 
obtained solution (the user position) will show an error higher than the error in the 
measured pseudoranges. This second effect is only due to the processing of the 
pseudoranges at the receiver, which “amplifies” the errors. This amplification effect is 
called the “dilution of precision” (DOP) and it depends only on the system matrix 
condition, which in turn depends on the relative positions of the involved GPS 
satellites with respect to the user. Knowing this, if we need to obtain the position with 
high precision (for topography applications for example), we can plan in advance the 
field measurements and take positions only when the satellites over the measurement 
site are in the best configuration to reduce the DOP to the minimum possible. The 
tasks to perform are marked in red. 

 

2 LOS coverage 
In the previous laboratory work (P1) you have written a set of Matlab programs to 
compute the ECEF coordinates of all GPS satellites at a given time. Those coordinates 
are independent of the position of the user. Using the programs of the previous 
laboratory work, compute the ECEF coordinates of all GPS satellites at current time 
and date. 
 
If we focus on a specific user location on the Earth surface it is important to know 
which subset of GPS satellites are visible from the user position at a given moment. If a 
satellite is visible we say that we are in “Line of Sight” (LoS) coverage of that satellite. 
To achieve this goal we need to find the pointing angles: azimuth, elevation and 
distance of any GPS satellite from a given observation point. With these parameters 
we can decide if there is LoS between the satellite and the user. 
 
 
2.1 Azimuth, elevation and distance 
In this part of the work the azimuth, elevation and distance from the observation point 
(the user position) to the satellite will be calculated. 
- The azimuth (𝛽𝛽) is the horizontal angle to the satellite measured clockwise from a 

north base line. 
- The elevation (𝛼𝛼) is the angle between the horizon and the center of the satellite. 

Those angles are represented in Figure 2.1. 



 - 4 -  

 

Figure 2.1. Azimuth (𝜷𝜷), elevation (𝜶𝜶) and distance (d) 

Using the algorithms from previous work you are able to locate a satellite at ECEF (x, y, 
z) Cartesian coordinates which are fixed to three Earth reference axis. Also, we can 
specify an observation point (the user position) with its LLA coordinates. The scenario 
is shown in Figure 2.2. In order to compute the pointing angles and distance the next 
steps must be followed: 

 

Figure 2.2. Satellite pointing scenario 

 

Set the user position to the LLA coordinates of EETAC: 

β 
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and write a function to convert the LLA coordinates of the user position to ECEF 
Cartesian (x, y, z) using the ellipsoid WGS84. You can use the expressions: 
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where λ means geodetic longitude, φ means geodetic latitude, h means the height 
above the ellipsoid and a, e are the ellipsoid parameters. 
 
Compute the vector that points from the user position to each of the satellites by 
subtractions of vectors. This is simple if both vectors are in the ECEF coordinate 
system. 

EETAC  
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Figure 2.3. Pointing vector 

Computing the vector 𝜌𝜌 is achieved by subtracting the vectors of the user position 
(observation point) and the satellite ECEF coordinates: 
 

𝜌̅𝜌 = 𝑆𝑆𝑆𝑆𝑆𝑆����� −  𝑂𝑂𝑂𝑂𝑂𝑂����� 

Now we know the vector 𝜌𝜌 that points from the user position to the satellite but its 
coordinates are given in a system parallel to ECEF centered at the user position. So we 
must rotate the axes to transform the vector to NED (North, East, Down) coordinates 
with respect to the user position. 
 
Write a MATLAB functions to rotate the axes from Cartesian ECEF to Cartesian NED 
coordinates and use them to convert the pointing vector coordinates into NED 
coordinates relative to the user position. This conversion is a multiplication of the ECEF 
vector by a 3x3 matrix whose coefficients depend on the latitude and longitude of the 
observation point. To rotate from ECEF to NED we must apply the following matrix 
product (where λ and φ are, respectively, the geodetic longitude and latitude of the 
user): 

 

�
𝑁𝑁
𝐸𝐸
𝐷𝐷
� = �

−𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐∅
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0

−𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑠𝑠𝑠𝑠𝑠𝑠∅
� �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� 

 
The elevation and azimuth angles, and also the distance, from NED Cartesian 
coordinates can be computed easily. Figure 2.4 represents the vector from the 
observation point to the satellite represented in NED coordinates. In this case the 
azimuth is denoted as 𝛽𝛽 and the elevation as α. 
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Figure 2.4. From NED coordinates to elevation and azimuth 

From Figure 2.4 we can obtain the pointing angles and the distance to each of the 
satellites: 

𝑑𝑑 = �𝑁𝑁2 + 𝐸𝐸2 + 𝐷𝐷2 

𝛼𝛼 = asin �−
𝐷𝐷
𝑑𝑑
� 

𝛽𝛽 = atan �
𝐸𝐸
𝑁𝑁
� 

Once you have implemented those expressions it’s easy to find out which satellites are 
visible from the user position at a given time.  You just have to check which satellites 
have an elevation higher than a minimum value and plot them in a polar 
representation using the provided Matlab function “viewSat” (see ANNEX I: 
Available satellite mapping function). We will assume that a satellite must be at least 
10˚ above the horizon to provide a useful GPS signal. At this point you must compare 
your result with the polar plot generated with the tools recommended at section 5 of 
this document. 

 

3 The GPS navigation system of equations 

This section describes how the satellite pseudoranges are related to the user position 
and the method for finding the user position by solving the navigation system of 
equations. 

Ignoring all the error sources except the time errors, the pseudorange between the 
user and one of the satellites can be expressed as: 

𝜌𝜌𝑗𝑗 = ��𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑢𝑢�
2 + �𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑢𝑢�

2 + �𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑢𝑢�
2 − 𝑐𝑐 · 𝑡𝑡𝑢𝑢 = 𝑓𝑓(𝑥𝑥𝑢𝑢,𝑦𝑦𝑢𝑢, 𝑧𝑧𝑢𝑢, 𝑡𝑡𝑢𝑢) 

β 
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where 𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗  and 𝑧𝑧𝑗𝑗 are the ECEF coordinates of the satellite, 𝑥𝑥𝑢𝑢, 𝑦𝑦𝑢𝑢 and 𝑧𝑧𝑢𝑢 are the 
ECEF coordinates of the user, 𝑐𝑐 is the speed of light and 𝑡𝑡𝑢𝑢 the difference between the 
time error of the satellite (known) and the time error of the user’s clock (unknown). 

Since this expression contains 4 unknowns, we need at least 4 independent equations 
to solve the system. Therefore, a minimum of 4 pseudoranges to 4 different satellites 
have to be measured to find the position and the clock error (notice that the time 
error is common to the 4 equations). The pseudorange is measured at the receiver by 
computing the correlation between the received PRN sequences and their local 
version. It’s called a pseudorange because it depends on the range (distance) to the 
satellite but also on the time error and other errors (mainly the ionosphere error, since 
the pseudorange assumes that the signal travels at the speed of light, which is not true 
inside the ionosphere). 

Although the pseudorange equations are not linear, the equation system can be solved 
using a linearization method. In order to obtain a linear system, the pseudorange 𝜌𝜌𝑗𝑗 is 
expressed as: 

𝜌𝜌𝑗𝑗 = 𝑓𝑓(𝑥𝑥𝑢𝑢,𝑦𝑦𝑢𝑢, 𝑧𝑧𝑢𝑢, 𝑡𝑡𝑢𝑢) = 𝑓𝑓(𝑥𝑥�𝑢𝑢 + Δ𝑥𝑥𝑢𝑢,𝑦𝑦�𝑢𝑢 + Δ𝑦𝑦𝑢𝑢, 𝑧̂𝑧𝑢𝑢 + Δ𝑧𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢 + Δ𝑡𝑡𝑢𝑢) 

where 𝑥𝑥�𝑢𝑢, 𝑦𝑦�𝑢𝑢 , 𝑧̂𝑧𝑢𝑢 and 𝑡̂𝑡𝑢𝑢 are the user estimated position and time (known) and Δ𝑥𝑥𝑢𝑢, 
Δ𝑦𝑦𝑢𝑢 , Δ𝑧𝑧𝑢𝑢and Δ𝑡𝑡𝑢𝑢 are the increments (unknown) with respect to the estimated values. 

By expressing the function as a Taylor series (centered at the estimated values) and 
keeping only the linear terms we get the approximated expression: 

𝜌𝜌𝑗𝑗 ≅ 𝑓𝑓(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢) +
𝜕𝜕𝜕𝜕(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢)

𝜕𝜕𝑥𝑥�𝑢𝑢
Δ𝑥𝑥𝑢𝑢 +

𝜕𝜕𝜕𝜕(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢)
𝜕𝜕𝑦𝑦�𝑢𝑢

Δ𝑦𝑦𝑢𝑢 +
𝜕𝜕𝜕𝜕(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢)

𝜕𝜕𝑧̂𝑧𝑢𝑢
Δ𝑧𝑧𝑢𝑢

+
𝜕𝜕𝜕𝜕(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢)

𝜕𝜕𝑡̂𝑡𝑢𝑢
Δ𝑡𝑡𝑢𝑢 

where all the partial derivatives can be computed to give: 

𝜕𝜕𝜕𝜕(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢)
𝜕𝜕𝑥𝑥�𝑢𝑢

= −
𝑥𝑥𝑗𝑗 − 𝑥𝑥�𝑢𝑢
𝑟̂𝑟𝑗𝑗

≡ −𝑎𝑎𝑥𝑥𝑥𝑥 

𝜕𝜕𝜕𝜕(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢)
𝜕𝜕𝑦𝑦�𝑢𝑢

= −
𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑢𝑢
𝑟̂𝑟𝑗𝑗

≡ −𝑎𝑎𝑦𝑦𝑦𝑦 

 
𝜕𝜕𝜕𝜕(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢)

𝜕𝜕𝑧̂𝑧𝑢𝑢
= −

𝑧𝑧𝑗𝑗 − 𝑧̂𝑧𝑢𝑢
𝑟̂𝑟𝑗𝑗

≡ −𝑎𝑎𝑧𝑧𝑧𝑧 

 
𝜕𝜕𝜕𝜕(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢)

𝜕𝜕𝑡̂𝑡𝑢𝑢
= −𝑐𝑐 

and where 𝑟̂𝑟𝑗𝑗 is the estimated range to the satellite (which can be computed based on 
the user estimated position): 
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𝑟̂𝑟𝑗𝑗 = ��𝑥𝑥𝑗𝑗 − 𝑥𝑥�𝑢𝑢�
2 + �𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑢𝑢�

2 + �𝑧𝑧𝑗𝑗 − 𝑧̂𝑧𝑢𝑢�
2

 

Notice that the vector ( ), ,j xj yj zja a a a=
 is the unitary vector pointing from the 

estimated user position to the satellite. Then, the estimated pseudorange, which can 
be computed based on the user estimated position and clock error, is given by: 

𝜌𝜌�𝑗𝑗 = ��𝑥𝑥𝑗𝑗 − 𝑥𝑥�𝑢𝑢�
2 + �𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑢𝑢�

2 + �𝑧𝑧𝑗𝑗 − 𝑧̂𝑧𝑢𝑢�
2 − 𝑐𝑐 · 𝑡̂𝑡𝑢𝑢 = 𝑓𝑓(𝑥𝑥�𝑢𝑢,𝑦𝑦�𝑢𝑢, 𝑧̂𝑧𝑢𝑢, 𝑡̂𝑡𝑢𝑢) 

Notice that estimated pseudorange is not measured, but computed; so it contains no 
errors. Based on  𝜌𝜌�𝑗𝑗 we can write the approximated pseudorange as: 

𝜌𝜌𝑗𝑗 ≅ 𝜌𝜌�𝑗𝑗 − 𝑎𝑎𝑥𝑥𝑥𝑥 · Δxu − 𝑎𝑎𝑦𝑦𝑦𝑦 · Δyu − 𝑎𝑎𝑧𝑧𝑧𝑧 · Δzu − c · Δtu 

And defining  Δ𝜌𝜌𝑗𝑗 = 𝜌𝜌�𝑗𝑗 − 𝜌𝜌𝑗𝑗  we get: 

Δ𝜌𝜌𝑗𝑗 = 𝑎𝑎𝑥𝑥𝑥𝑥 · Δxu + 𝑎𝑎𝑦𝑦𝑦𝑦 · Δyu + 𝑎𝑎𝑧𝑧𝑧𝑧 · Δzu + c · Δtu 

In case of measuring the pseudorange to 4 different satellites we get the following 
equation system: 

Δ𝜌𝜌1 = 𝑎𝑎𝑥𝑥1 · Δxu + 𝑎𝑎𝑦𝑦1 · Δyu + 𝑎𝑎𝑧𝑧1 · Δzu + c · Δtu
Δ𝜌𝜌2 = 𝑎𝑎𝑥𝑥2 · Δxu + 𝑎𝑎𝑦𝑦2 · Δyu + 𝑎𝑎𝑧𝑧2 · Δzu + c · Δtu
Δ𝜌𝜌3 = 𝑎𝑎𝑥𝑥3 · Δxu + 𝑎𝑎𝑦𝑦3 · Δyu + 𝑎𝑎𝑧𝑧3 · Δzu + c · Δtu
Δ𝜌𝜌4 = 𝑎𝑎𝑥𝑥4 · Δxu + 𝑎𝑎𝑦𝑦4 · Δyu + 𝑎𝑎𝑧𝑧4 · Δzu + c · Δtu

 

which is a linear system that can be also written in matrix notation: 

𝚫𝚫𝚫𝚫 = 𝐇𝐇 · 𝚫𝚫𝚫𝚫 

In that system the known data are: the incremental pseudorange vector: 

𝚫𝚫𝚫𝚫 = �

Δ𝜌𝜌1
Δ𝜌𝜌2
Δ𝜌𝜌3
Δ𝜌𝜌4

� 

and the unitary vectors from the user estimated position (matrix H): 

𝐇𝐇 =

⎣
⎢
⎢
⎢
⎡
𝑎𝑎𝑥𝑥1 𝑎𝑎𝑦𝑦1 𝑎𝑎𝑧𝑧1 1
𝑎𝑎𝑥𝑥2 𝑎𝑎𝑦𝑦2 𝑎𝑎𝑧𝑧2 1
𝑎𝑎𝑥𝑥3 𝑎𝑎𝑦𝑦3 𝑎𝑎𝑧𝑧3 1
𝑎𝑎𝑥𝑥4 𝑎𝑎𝑦𝑦4 𝑎𝑎𝑧𝑧4 1⎦

⎥
⎥
⎥
⎤
 



 - 10 -  

While the unknown vector is the user incremental position: 

𝚫𝚫𝚫𝚫 = �

Δxu
Δyu
Δzu

c · Δtu

� 

When the number of available satellites is exactly 4 the system can be solved by 
inverting matrix H: 

𝚫𝚫𝚫𝚫 = 𝐇𝐇−1 · 𝚫𝚫𝚫𝚫 

but when more than 4 satellites are available, which is the usual situation, the system 
becomes over specified (more equations than unknowns) and it has not an exact 
solution. In this case we must assume that the pseudorange vector contains errors and 
solve the system in the sense of the least square error. The least square error solution 
is based on the pseudo-inverse matrix and can also be applied when only 4 satellites 
are available: 

𝚫𝚫𝚫𝚫 = �𝐇𝐇T𝐇𝐇�−1𝐇𝐇T · 𝚫𝚫𝚫𝚫 

This solution must be computed repeatedly until the magnitude of  𝚫𝚫𝚫𝚫  becomes 
sufficiently small (to ensure that the Taylor series approximation is realistic). 

Set the user position to the LLA coordinates of EETAC and compute matrix H using all 
the GPS satellites with elevation higher than 10˚ at the current time and date. You 
don’t need to solve the navigation system of equations. Notice that matrix H is (N x 
4), since it has 4 columns and as many rows as satellites are taken into consideration 
(N). Also notice that the rows of H (except the last column which is always equal to 1) 
are simply the 3 Cartesian coordinates of the unitary vectors pointing from the user to 
each of the satellites. 

 

4 Dilution of precision 

In the previous equations we did not take into account explicitly the error terms inside 
the measured pseudoranges. Remember that those errors can be reduced by using 
adequate modelling, but cannot be reduced to zero. If we admit that there are some 
unknown (not modelled) errors in the measured pseudoranges the positioning 
equation becomes: 

𝚫𝚫𝛒𝛒′ = 𝚫𝚫𝚫𝚫 + 𝛈𝛈 = 𝐇𝐇 · 𝚫𝚫𝚫𝚫 + 𝛈𝛈 

where  𝚫𝚫𝚫𝚫′ is the measured pseudorange vector (with errors), 𝚫𝚫𝚫𝚫 is the theoretical 
pseudorange vector (including only the time errors) and 𝛈𝛈 is the pseudorange error 
vector. The least squares solution of the previous equation is: 
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𝚫𝚫𝐮𝐮′ = �𝐇𝐇T𝐇𝐇�−1𝐇𝐇T · 𝚫𝚫𝚫𝚫′ = 𝚫𝚫𝚫𝚫 + �𝐇𝐇T𝐇𝐇�−1𝐇𝐇T · 𝛈𝛈 = 𝚫𝚫𝚫𝚫 + 𝛆𝛆 

where 𝚫𝚫𝐮𝐮′ is the obtained incremental position of the user. This means that we cannot 
obtain the user position without errors. The error vector affecting the obtained 
position is given by: 

𝛆𝛆 = �𝐇𝐇T𝐇𝐇�−1𝐇𝐇T · 𝛈𝛈 

and we see that the pseudorange error vector is amplified by a factor which depends 
only on the system matrix. This is the factor that originates the DOP. 

We can assume that all the components of  𝛈𝛈 = [𝜂𝜂1 𝜂𝜂2 𝜂𝜂3 𝜂𝜂4]T are independent zero 
mean random variables with the same variance: 𝜎𝜎2. Ignoring for the moment the 
matrix (𝐇𝐇T𝐇𝐇)−1, the vector that produces the positioning errors in terms of distance if 
contributed by the multiplication of the first 3 rows of matrix  𝐇𝐇T by vector  𝛈𝛈, that is: 

�
𝑎𝑎𝑥𝑥1 · 𝜂𝜂1 + 𝑎𝑎𝑥𝑥2 · 𝜂𝜂2 + 𝑎𝑎𝑥𝑥3 · 𝜂𝜂3 + 𝑎𝑎𝑥𝑥4 · 𝜂𝜂4
𝑎𝑎𝑦𝑦1 · 𝜂𝜂1 + 𝑎𝑎𝑦𝑦2 · 𝜂𝜂2 + 𝑎𝑎𝑦𝑦3 · 𝜂𝜂3 + 𝑎𝑎𝑦𝑦4 · 𝜂𝜂4
𝑎𝑎𝑧𝑧1 · 𝜂𝜂1 + 𝑎𝑎𝑧𝑧2 · 𝜂𝜂2 + 𝑎𝑎𝑧𝑧3 · 𝜂𝜂3 + 𝑎𝑎𝑧𝑧4 · 𝜂𝜂4

� 

The squared magnitude of this error vector is: 

(𝑎𝑎𝑥𝑥1 · 𝜂𝜂1 + 𝑎𝑎𝑥𝑥2 · 𝜂𝜂2 + 𝑎𝑎𝑥𝑥3 · 𝜂𝜂3 + 𝑎𝑎𝑥𝑥4 · 𝜂𝜂4)2 + �𝑎𝑎𝑦𝑦1 · 𝜂𝜂1 + 𝑎𝑎𝑦𝑦2 · 𝜂𝜂2 + 𝑎𝑎𝑦𝑦3 · 𝜂𝜂3 + 𝑎𝑎𝑦𝑦4 · 𝜂𝜂4�
2

+ (𝑎𝑎𝑧𝑧1 · 𝜂𝜂1 + 𝑎𝑎𝑧𝑧2 · 𝜂𝜂2 + 𝑎𝑎𝑧𝑧3 · 𝜂𝜂3 + 𝑎𝑎𝑧𝑧4 · 𝜂𝜂4)2 

Assuming that all the components of vector  𝛈𝛈 are independent random variables, the 
average of this squared magnitude is: 

(𝑎𝑎𝑥𝑥12 + 𝑎𝑎𝑦𝑦12 + 𝑎𝑎𝑧𝑧12 ) · 𝜎𝜎2 + (𝑎𝑎𝑥𝑥22 + 𝑎𝑎𝑦𝑦22 + 𝑎𝑎𝑧𝑧22 ) · 𝜎𝜎2 + (𝑎𝑎𝑥𝑥32 + 𝑎𝑎𝑦𝑦32 + 𝑎𝑎𝑧𝑧32 ) · 𝜎𝜎2 + (𝑎𝑎𝑥𝑥42 + 𝑎𝑎𝑦𝑦42

+ 𝑎𝑎𝑧𝑧42 ) · 𝜎𝜎2 = 4𝜎𝜎2 

That is the same average of the squared magnitude of vector  𝛈𝛈, so we conclude that 
the product of vector  𝛈𝛈 by matrix  𝐇𝐇T does not increase the distance error. 

The time error component is contributed by the product of the last row of matrix  𝐇𝐇T 
by vector  𝛈𝛈, that is  𝜂𝜂1 + 𝜂𝜂2 + 𝜂𝜂3 + 𝜂𝜂4, which has an average squared value of 4𝜎𝜎2 
(again the same as the average squared magnitude of vector  𝛈𝛈), so we conclude that 
the product by matrix  𝐇𝐇T does not produce any increase in the positioning errors. 

It is only the product by matrix  𝐐𝐐 ≡ (𝐇𝐇T𝐇𝐇)−1 what contributes to the increase of the 
error variance. Notice that matrix  𝐐𝐐  is calculated from the estimated user position. 
Matrix Q is always a (4 x 4) square matrix (even if more than 4 satellites are considered 
for H). 
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Assuming that all the components of  𝛈𝛈 are independent zero mean random variables 
with the same variance (𝜎𝜎2), only the diagonal elements of 𝐐𝐐 are relevant for the DOP 
calculation. This can be shown by computing the covariance matrix of vector ε : 

𝛆𝛆𝛆𝛆T = 𝐐𝐐𝐇𝐇T · 𝛈𝛈𝛈𝛈T · HQT = 𝐐𝐐𝐇𝐇T · σ2𝐈𝐈 · HQT = σ2 · 𝐐𝐐 · 𝐇𝐇TH · QT = σ2QT = σ2Q 

For our purposes matrix 𝐐𝐐 can be written as: 

𝐐𝐐 =

⎣
⎢
⎢
⎢
⎡
𝑄𝑄𝑥𝑥𝑥𝑥 𝑄𝑄𝑦𝑦𝑦𝑦 𝑄𝑄𝑧𝑧𝑧𝑧 𝑄𝑄𝑐𝑐𝑡𝑡𝑡𝑡
𝑄𝑄𝑥𝑥𝑥𝑥 𝑄𝑄𝑦𝑦𝑦𝑦 𝑄𝑄𝑧𝑧𝑧𝑧 𝑄𝑄𝑐𝑐𝑡𝑡𝑡𝑡
𝑄𝑄𝑥𝑥𝑥𝑥 𝑄𝑄𝑦𝑦𝑦𝑦 𝑄𝑄𝑧𝑧𝑧𝑧 𝑄𝑄𝑐𝑐𝑡𝑡𝑡𝑡
𝑄𝑄𝑥𝑥𝑐𝑐𝑡𝑡 𝑄𝑄𝑦𝑦𝑐𝑐𝑡𝑡 𝑄𝑄𝑧𝑧𝑐𝑐𝑡𝑡 𝑄𝑄𝑐𝑐𝑡𝑡𝑐𝑐𝑡𝑡⎦

⎥
⎥
⎥
⎤
 

Since vector 𝛆𝛆 has been computed in Cartesian ECEF coordinates, 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦 and 𝜎𝜎𝑧𝑧 are the 
error standard deviations referred to the ECEF axis. If we want to obtain the variance 
components of the error vector referred to the local coordinate system (𝜎𝜎𝑁𝑁, 𝜎𝜎𝐸𝐸 and 
𝜎𝜎𝐷𝐷) we must rotate vector 𝛆𝛆 to North, East, Down Cartesian coordinates. This will allow 
us to decompose the DOP into HDOP and VDOP. The rotated error vector can be 
expressed as 𝛅𝛅 = 𝐑𝐑𝐑𝐑, with 𝐑𝐑 given by: 

R = �

−𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐∅ 0
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0 0

−𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑠𝑠𝑠𝑠𝑠𝑠∅ 0
0 0 0 1

� 

Notice that matrix 𝐑𝐑 rotates the spatial components of 𝛆𝛆 from ECEF to NED and does 
not change the time component of 𝛆𝛆. The covariance matrix of 𝛅𝛅 is: 

𝛅𝛅𝛅𝛅T = 𝐑𝐑 · 𝛆𝛆𝛆𝛆T · 𝐑𝐑T = 𝐑𝐑 · σ2Q · 𝐑𝐑T = σ2Q'
Q'=𝐑𝐑 · Q · 𝐑𝐑T  

𝐐𝐐' = �

𝑞𝑞𝑁𝑁𝑁𝑁 𝑞𝑞𝑁𝑁𝐸𝐸 𝑞𝑞𝑁𝑁𝐷𝐷 𝑞𝑞𝑁𝑁𝑐𝑐𝑡𝑡
𝑞𝑞𝐸𝐸𝐸𝐸 𝑞𝑞𝐸𝐸𝐸𝐸 𝑞𝑞𝐸𝐸𝐷𝐷 𝑞𝑞𝐸𝐸𝑐𝑐𝑡𝑡
𝑞𝑞𝐷𝐷𝐷𝐷 𝑞𝑞𝐷𝐷𝐸𝐸 𝑞𝑞𝐷𝐷𝐷𝐷 𝑞𝑞𝐷𝐷𝑐𝑐𝑡𝑡
𝑞𝑞𝑐𝑐𝑡𝑡𝑁𝑁 𝑞𝑞𝑐𝑐𝑐𝑐𝐸𝐸 𝑞𝑞𝑐𝑐𝑡𝑡𝐷𝐷 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� 

The Horizontal DOP (HDOP) is the multiplication factor that increases the distance 
errors in the horizontal plane. It is given by: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = �𝑞𝑞𝑁𝑁𝑁𝑁 + 𝑞𝑞𝐸𝐸𝐸𝐸 

The HDOP is usually the most relevant parameter for positioning applications on the 
Earth surface. The vertical DOP (VDOP) is the multiplication factor that increases the 
distance error in the vertical plane (altitude error). It is given by: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = �𝑞𝑞𝐷𝐷𝐷𝐷 

The Position DOP (PDOP) is the multiplication factor that increases the 3D distance 
error. It is given by: 
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𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑄𝑄𝑥𝑥𝑥𝑥 + 𝑄𝑄𝑦𝑦𝑦𝑦 + 𝑄𝑄𝑧𝑧𝑧𝑧 = �𝑞𝑞𝑁𝑁𝑁𝑁 + 𝑞𝑞𝐸𝐸𝐸𝐸 + 𝑞𝑞𝐷𝐷𝐷𝐷 = �𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃2 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃2 

The Time DOP (TDOP) is the multiplication factor that increases the time error. It is 
given by: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

The Geometric DOP (GDOP) takes into account the position and time error increase 
factor: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃2 

Write a Matlab function to compute the GDOP, PDOP, HDOP, VDOP and TDOP. You 
must previously compute matrices Q and Q’ from matrix H. Add a time loop to your 
program to repeat the DOP computations for each minute within the next 6 hours 
interval. You will get a plot similar to this: 

 

 

 

The following pseudo-code summarizes the explained steps (where functions 
“LLA2ECEF”, “CONSTELLATION”, “LoS” and “POINTING” or equivalent code must be 
written by you or reused from previous lab. work): 

 

    xyzSatellites = CONSTELLATION(time);% find ECEF coordinates of GPS sats. 
 
    sta_lat = lat(EETAC)    % set user position to EETAC 
    sta_lon = lon(EETAC) 
 
    xyztUserPosition = LLA2ECEF([sta_lat, sta_lon]); % find ECEF user position 
 
    time = now();   % Set time 
 
    xyzLocalSatellites = LoS(xyzSatellites); % find visible GPS satellites 
 
    H = POINTING(xyzLocalSatellites, xyztUserPosition);% Compute matrix H 
 
    Q ≡ (HTH)−1 % Compute matrix Q 
 
    Q′ ≡ RQRT % Compute matrix Q’ 
 
    GDOP = sqrt(qNN+ qEE + qDD + qctct); % Geometric DOP 
    PDOP = sqrt(qNN+ qEE + qDD);  % Position DOP 
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    HDOP = sqrt(qNN+ qEE);   % Horizontal plane DOP 
    VDOP = sqrt(qDD);    % Vertical DOP 
    TDOP = sqrt(qctct);    % Time DOP 
 

 

 

5 Test your results with an online service or with your smart 
phone 

You can use an online calculator to compare the obtained results about DOP and 
satellite visibility. Check this URL: 

http://gnssmissionplanning.com/ 

Another online resource for computing DOP and satellite visibility is: 

http://www.trimble.com/GNSSPlanningOnline/ 

But this web page will ask you to install the (free) Microsoft Silverlight extension. For this 
reason http://gnssmissionplanning.com seems more friendly. 

These instructions are for http://www.trimble.com/GNSSPlanningOnline/ but the use of 
http://gnssmissionplanning.com is quite similar. 

First you must set up your location (EETAC, Castelldefels) at this screen (set the mask angle to 
10º): 

 

Then select the GPS satellite constellation only: 

http://gnssmissionplanning.com/
http://www.trimble.com/GNSSPlanningOnline/
http://gnssmissionplanning.com/
http://www.trimble.com/GNSSPlanningOnline/
http://gnssmissionplanning.com/
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In the next screens you can check which GPS satellites are currently visible and their 
azimuth and elevation as seen from your current location: 
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This screen shows you the evolution of the different DOP values at your location using 
a time step of 10 minutes: 

 

Notice that this tool computes the DOP with low time resolution. With your Matlab 
program you can compute the DOPs every minute: 

 

In this way you can notice the stepwise changes in DOPs due to the appearance or 
disappearance of GPS satellites over the horizon. 

You can download several applications for smart phones which give you a polar map 
showing the elevation and azimuth angles to visible GPS satellites and the actual 
values of DOP from your current position. 

One of these applications for Android is the “GPS status and toolbox”. It can be 
downloaded from Google Play: 

https://play.google.com/store/apps/details?id=com.eclipsim.gpsstatus2&hl=es 

https://play.google.com/store/apps/details?id=com.eclipsim.gpsstatus2&hl=es
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7 ANNEX I: Available satellite mapping function 

This Matlab function represents the available GPS satellites in a polar plane centered 
at the user position. The angle represents the azimuth and the radius represents the 
elevation. Both magnitudes are in degrees. 

 

The function is called as follows: 

viewSat(AZIMUTH, ELEV, ID, min_elev, max_elev, downstr) 

The inputs are the following: 

• AZIMUTH: Array with the values of azimuth of the available satellites (in 
degrees). 

• ELEV: Array with the values of elevation of the available satellites (in degrees). 
• ID: PRN sequence identifier of the available satellites. 
• Min_elev: miminum elevation in degrees. 
• Max_elev: maximum elevation in degrees. 
• Downstr: text which is showed at the bottom of the figure. 
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